Pressure Vessel and Combined Loading

MAE 314 – Solid Mechanics Y. Zhu

Innovation in Actio

Slide 1

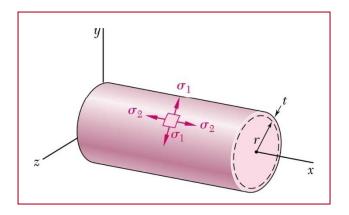
Thin-Walled Pressure Vessels

Cylindrical vessel with capped ends

Spherical vessel

- Assumptions
 - Constant gage pressure, p = internal pressure external pressure
 - Thickness much less than radius (t << r, t / r < 0.1)
 - Internal radius = r
 - Point of calculation far away from ends (St. Venant's principle)

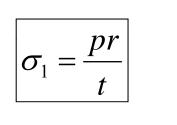
Cylindrical Pressure Vessel

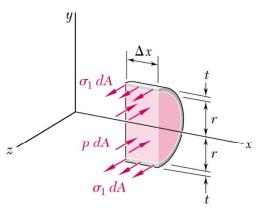


Circumferential (Hoop) Stress: σ_1

Sum forces in the vertical direction.

$$2\sigma_1(t\Delta x) - p(2r\Delta x) = 0$$

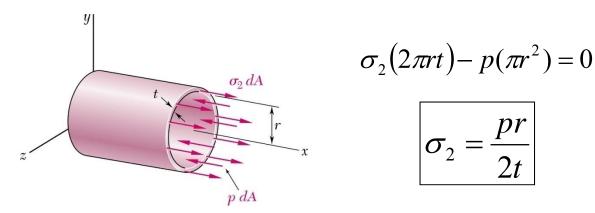




Innovation in

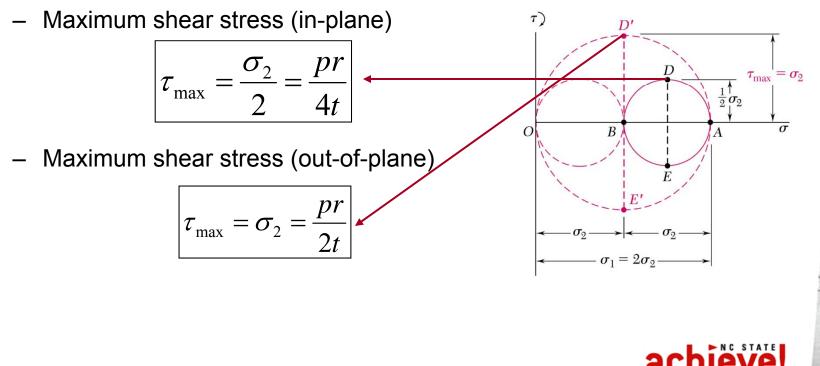
Longitudinal stress: σ_2

Sum forces in the horizontal direction:

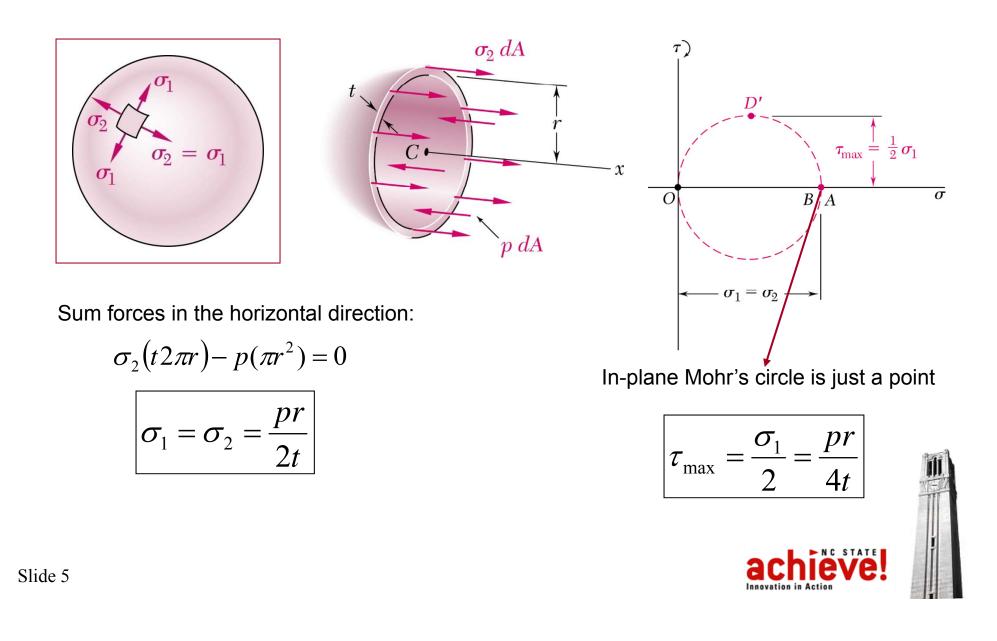


Cylindrical Pressure Vessel cont'd

- There is also a radial component of stress because the gage pressure must be balanced by a stress perpendicular to the surface.
 - $-\sigma_r = p$
 - However $\sigma_r << \sigma_1$ and σ_2 , so we assume that $\sigma_r = 0$ and consider this a case of plane stress.
- Mohr's circle for a cylindrical pressure vessel:

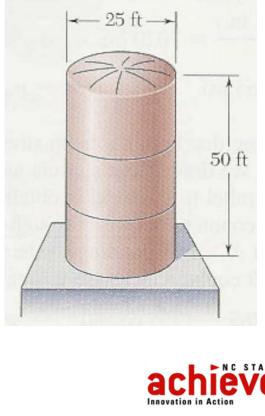


Spherical Pressure Vessel



Example Problem 1

When filled to capacity, the unpressurized storage tank shown contains water to a height of 48 ft above its base. Knowing that the lower portion of the tank has a wall thickness of 0.625 in, determine the maximum normal stress and the maximum shearing stress in the tank. (Specific weight of water = 62.4 lb/ft^3)



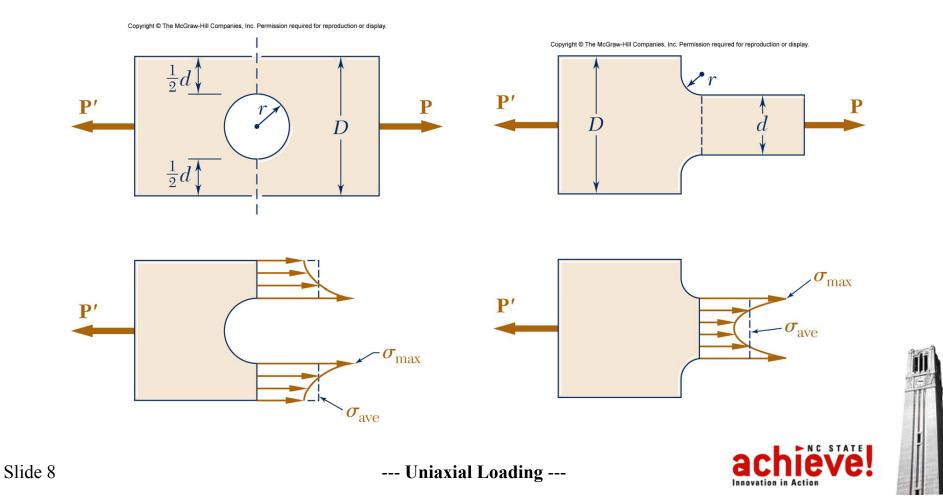
achieve!

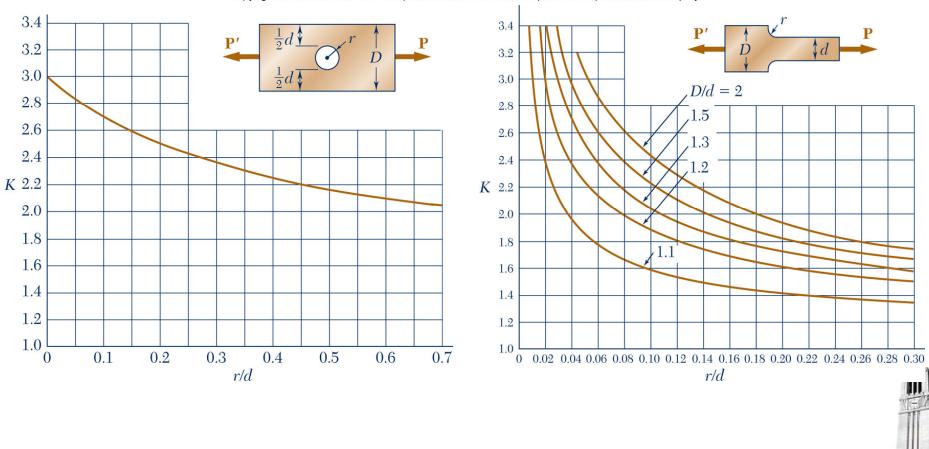
Slide 7

Stress Concentration

• The stresses near the points of application of concentrated loads can reach values much larger than the average value of the stress in the member.

• Stress concentration factor, $K = \sigma_{max} / \sigma_{ave}$





Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

achieve Innovation in Action

Example

 Determine the largest axial load P that can safely supported by a flat steel bar consisting of two portions, both 10 mm thick and, respectively, 40 and 60 mm wide, connected by fillets of radius r = 8 mm. assume an allowable normal stress of 165 MPa. (Example 2.12 in Beer's book)

Poisson's Ratio

- When an axial force is applied to a bar, the bar not only elongates but also shortens in the other two orthogonal directions.
- Poisson's ratio (v) is the ratio of lateral strain to axial strain.

$$\upsilon = -\frac{\text{lateral strain}}{\text{axial strain}} = -\frac{\varepsilon_y}{\varepsilon_x} = -\frac{\varepsilon_z}{\varepsilon_x}$$

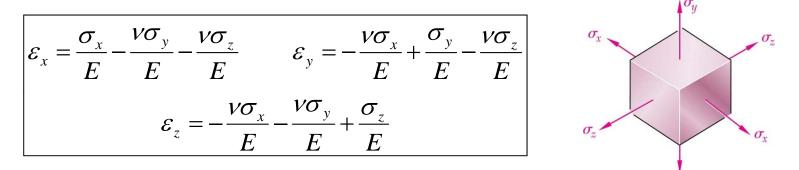
Minus sign needed to obtain a positive value – all engineering materials have opposite signs for axial and lateral strains

v is a material specific property and is dimensionless.

axial strain

Generalized Hooke's Law

- Let's generalize Hooke's Law (σ =E ϵ).
 - Assumptions: linear elastic material, small deformations



• So, for the case of a homogenous isotropic bar that is axially loaded along the x-axis (σ_v =0 and σ_z =0), we get

$$\varepsilon_x = \frac{\sigma_x}{E}$$
 $\varepsilon_y = \varepsilon_z = -\frac{\nu \sigma_x}{E}$

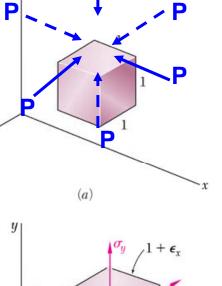
Even though the stress in the y and z axes are zero, the strain is not!

Poisson's Ratio cont'd

- What are the limits on v? We know that v > 0.
 - Consider a cube with side lengths = 1
 - Apply hydrostatic pressure to the cube $\sigma_{x}=\sigma_{y}=\sigma_{z}=-P$
 - Can write an expression for the change in volume of the cube

$$\Delta V = (1 + \varepsilon_x)(1 + \varepsilon_y)(1 + \varepsilon_z) - 1$$

= 1 - 1 + \varepsilon_x + \varepsilon_y + \varepsilon_z + \varepsilon_x \varepsilon_y + \varepsilon_x \varepsilon_z + \varepsilon_x \varepsilon_y \varepsilon_x \varepsilon_y \varepsilon_x + \varepsilon_x \varepsilon_y \varepsilon_x \varepsilon_y \varepsilon_x \varepsilon_y \varepsilon_x \varepsilon_x \varepsilon_y \varepsilon_x \varepsilon_x \varepsilon_x \varepsilon_y \varepsilon_x \varepsi_x \varepsilon_x \varepsi_x \varepsilon_x \varepsilon_x \varepsil



(b)

 $-1 + \epsilon_u$

 $1 + \epsilon_{\star}$

y

 ϵ_x , ϵ_y , ϵ_z are very small, so we can neglect the terms of order ϵ^2 or ϵ^3

Slide 13

Poisson's Ratio cont'd

- ΔV simplifies to $\Delta V \cong \varepsilon_x + \varepsilon_y + \varepsilon_z$
- Plug σ =P/A=P into our generalized equations for strain.

$$\varepsilon_{x} = \frac{\sigma_{x}}{E} - \frac{v\sigma_{y}}{E} - \frac{v\sigma_{z}}{E} = -\frac{P}{E} + \frac{vP}{E} + \frac{vP}{E} = \frac{P}{E}(2v-1)$$

$$\varepsilon_{y} = -\frac{v\sigma_{x}}{E} + \frac{\sigma_{y}}{E} - \frac{v\sigma_{z}}{E} = \frac{vP}{E} - \frac{P}{E} + \frac{vP}{E} = \frac{P}{E}(2v-1)$$

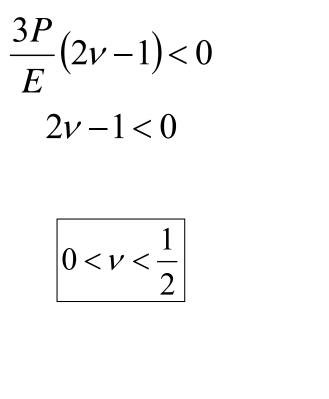
$$\varepsilon_{z} = -\frac{v\sigma_{x}}{E} - \frac{v\sigma_{y}}{E} + \frac{\sigma_{z}}{E} = \frac{vP}{E} + \frac{vP}{E} - \frac{P}{E} = \frac{P}{E}(2v-1)$$

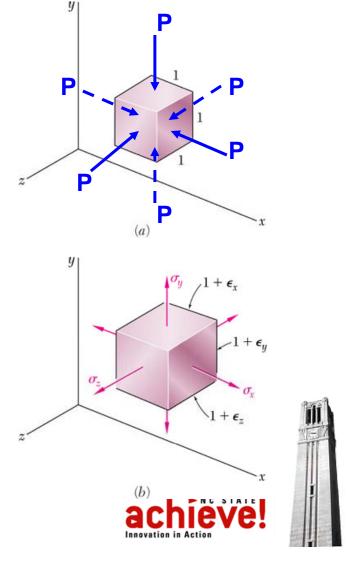
• Plug these values into the expression for ΔV .

$$\Delta V \cong \frac{3P}{E} (2\nu - 1)$$

Poisson's Ratio cont'd

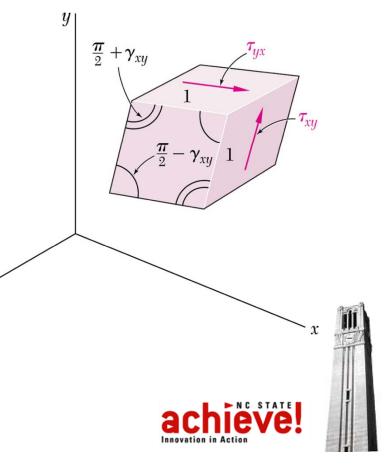
• Since the cube is compressed, we know ΔV must be less than zero.





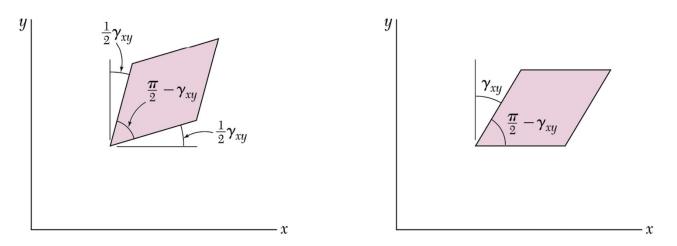
Shear Strain

- Recall that
 - Normal stresses produce a change in volume of the element
 - Shear stresses produce a change in shape of the element
- Shear strain (γ) is an angle measured in degrees or radians (dimensionless)
- Sign convention is the same as for shear stress (τ)



Shear Strain cont'd

• There are two equivalent ways to visualize shear strain.

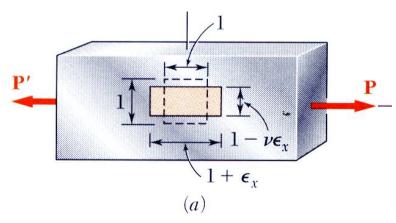


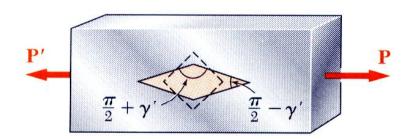
• Hooke's Law for shear stress is defined as

$$\tau_{xy} = G\gamma_{xy} \qquad \tau_{xz} = G\gamma_{xz} \qquad \tau_{yz} = G\gamma_{yz}$$

- G = shear modulus (or modulus of rigidity)
- G is a material specific property with the same units as E (psi or Pa).

Relation Among E, v, and G



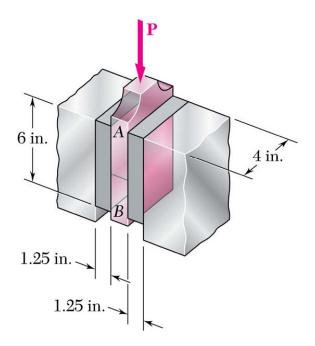


- An axially loaded slender bar will elongate in the axial direction and contract in the transverse directions.
- An initially cubic element oriented as in top figure will deform into a rectangular parallelepiped. The axial load produces a normal strain.
- If the cubic element is oriented as in the bottom figure, it will deform into a rhombus. Axial load also results in a shear strain.
- Components of normal and shear strain are related,

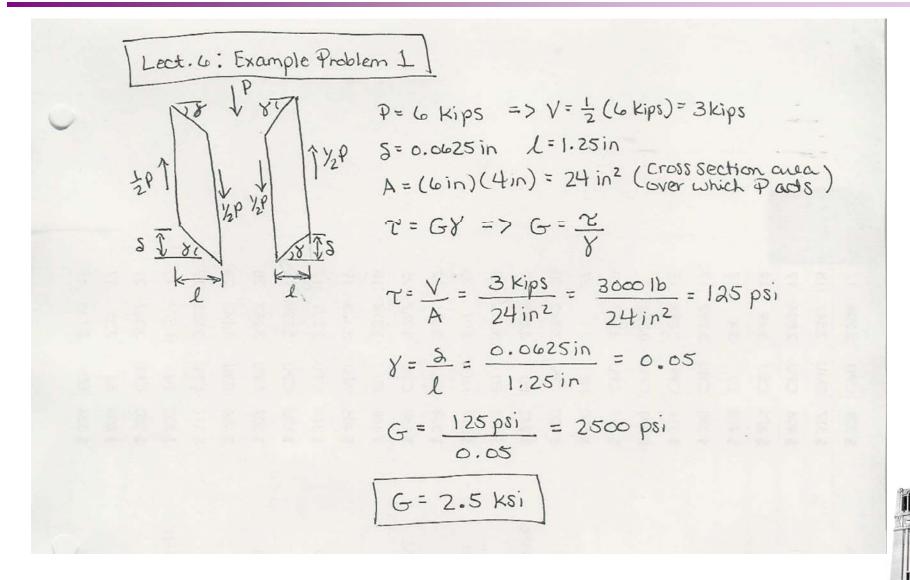
$$\frac{E}{2G} = (1 + \nu)$$

Example Problem 1

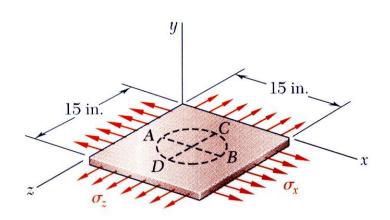
 A vibration isolation unit consists of two blocks of hard rubber bonded to a plate AB and to rigid supports as shown. Knowing that a force of magnitude P = 6 kips causes a deflection of δ=0.0625 in. of plate AB, determine the modulus of rigidity of the rubber used.



Example Problem 1 Solution



Example Problem



A circle of diameter d = 9 in. is scribed on an unstressed aluminum plate of thickness t = 3/4in. Forces acting in the plane of the plate later cause normal stresses $\sigma_x = 12$ ksi and $\sigma_z = 20$ ksi.

For $E = 10 \times 10^6$ psi and v = 1/3, determine the change in:

- a) the length of diameter *AB*,
- b) the length of diameter *CD*,
- c) the thickness of the plate, and
- d) the volume of the plate.

(sample problem 2.5 in Beer's book)

Example Problem 2 Solution

• Apply the generalized Hooke's Law to • Evaluate the deformation components. find the three components of normal strain. $\delta_{B/A} = \varepsilon_x d = (+0.533 \times 10^{-3} \text{in./in.})(9 \text{ in.})$

$$\varepsilon_x = +\frac{\sigma_x}{E} - \frac{\nu \sigma_y}{E} - \frac{\nu \sigma_z}{E}$$

$$= \frac{1}{10 \times 10^6 \text{ psi}} \left[(12 \text{ ksi}) - 0 - \frac{1}{3} (20 \text{ ksi}) \right]$$

$$= +0.533 \times 10^{-3} \text{ in./in.}$$

$$\varepsilon_y = -\frac{\nu \sigma_x}{E} + \frac{\sigma_y}{E} - \frac{\nu \sigma_z}{E}$$

$$= -1.067 \times 10^{-3} \text{ in./in.}$$

$$\varepsilon_z = -\frac{\nu \sigma_x}{E} - \frac{\nu \sigma_y}{E} + \frac{\sigma_z}{E}$$

$$= +1.600 \times 10^{-3} \text{ in./in.}$$

$$\delta_{B/A} = \varepsilon_x d = (+0.533 \times 10^{-3} \text{ in./in.})(9 \text{ in.})$$

$$\delta_{B/A} = +4.8 \times 10^{-3} \text{ in.}$$

$$\delta_{C/D} = \varepsilon_z d = (+1.600 \times 10^{-3} \text{ in./in.})(9 \text{ in.})$$

$$\delta_{C/D} = +14.4 \times 10^{-3} \text{ in.}$$

$$\delta_t = \varepsilon_y t = (-1.067 \times 10^{-3} \text{ in./in.})(0.75 \text{ in.})$$

$$\delta_t = -0.800 \times 10^{-3} \text{ in.}$$

• Find the change in volume $e = \varepsilon_x + \varepsilon_y + \varepsilon_z = 1.067 \times 10^{-3} \text{ in}^3/\text{in}^3$ $\Delta V = eV = 1.067 \times 10^{-3} (15 \times 15 \times 0.75) \text{in}^3$ $\Delta V = +0.187 \text{ in}^3$ **achieve!**