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§3.2 PRESSURE VESSELS

§3.1. Introduction

This Lecture continues with the theme of the last one: using average stresses instead of point
stresses to quickly get results useful in preliminary design or in component design. We look at more
complicated structural configurations: thin wall pressure vessels, which despite their apparently
higher complexity can be treated directly by statics if both geometry and loading are sufficiently
simple.

The main difference with respect to the component configurations treated in the previous lecture is
that the state of stress in the vessel wall is two dimensional. More specifically: plane stress. As
such they will provide examples for 2D stress-displacement analysis once 2D strains and multidi-
mensional material laws are introduced in Lectures 4–5.

§3.2. Pressure Vessels

(a) (b)

Figure 3.1. Pressure vessels used for fluid storage: (a) spherical tanks, (b) cylindrical tank.

Thin wall pressure vessels (TWPV) are widely used in industry for storage and transportation of
liquids and gases when configured as tanks. See Figure 3.1. They also appear as components of
aerospace and marine vehicles such as rocket and balloon skins and submarine hulls (although in
the latter case the vessel is externally pressurized, violating one of the assumptions listed below).
Two geometries will be examined in this lecture:

• Cylindrical pressure vessels.

• Spherical pressure vessels.

The walls of an ideal thin-wall pressure vessel act as a membrane (that is, they are unaffected by
bending stresses over most of their extent). A sphere is the optimal geometry for a closed pressure
vessel in the sense of being the most structurally efficient shape. A cylindrical vessel is somewhat
less efficient for two reasons: (1) the wall stresses vary with direction, (2) closure by end caps can
alter significantly the ideal membrane state, requiring additional local reinforcements. However
the cylindrical shape may be more convenient to fabricate and transport.
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Lecture 3: THIN WALLED PRESSURE VESSELS

§3.3. Assumptions

The key assumptions used here are: wall thinness and geometric symmetries. These make possible
to obtain average wall stresses analysis with simple free-body diagrams (FBD). Here is a more
detailed list of assumptions:

1. Wall Thinness. The wall is assumed to be very thin compared to the other dimensions of the
vessel. If the thickness is t and a characteristic dimension is R (for example, the radius of the
cylinder or sphere) we assume that

t/R << 1, or R/t >> 1 (3.1)

Usually R/t > 10. As a result, we may assume that the stresses are uniform across the wall.

2. Symmetries. In cylindrical vessels, the geometry and the loading are cylindrically symmetric.
Consequently the stresses may be assumed to be independent of the angular coordinate of
the cylindrically coordinate system. In spherical vessels, the geometry and the loading are
spherically symmetric. Therefore the stresses may be assumed to be independent of the two
angular coordinates of the spherical coordinate system and in fact are the same in all directions.

3. Uniform Internal Pressure. The internal pressure, denoted by p, is uniform and everywhere
positive. If the vessel is also externally pressurized, for example subject to athmospheric
pressure, p is defined by subtracting the external pressure from the internal one, a difference
called gage pressure. If the external pressure is higher, as in the case of a submarine hull,
the stress formulas should be applied with extreme caution because another failure mode:
instability due to wall buckling, may come into play. See Section 3.5.

4. Ignoring End Effects. Features that may affect the symmetry assumptions are ignored. This
includes supports and cylinder end caps. The assumption is that disturbances of the basic
stress state are confined to local regions and may be ignored in basic design decision such as
picking up the thickness away from such regions.

We study the two simplest geometries next.

§3.4. Cylindrical Vessels

We consider a cylindrical vessel of radius R, thickness t loaded by internal pressure p. We use the
cylindrical coordinate system (x , r , θ ) depeicted in Figure 3.2(a), in which

x axial coordinate

θ angular coordinate, positive as shown

r radial coordinate

§3.4.1. Stress Assumptions

Cut the cylinder by two normal planes at x and x + dx , and then by two planes θ and θ + dθ as
shown in Figure 3.2(a). The resulting material element, shown in exploded view in Figure 3.2(b)
has six surfaces. The outer surface r = R is stress free. Thus

σrr = τr x = τrθ = 0 at r = R (3.2)
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§3.4 CYLINDRICAL VESSELS
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Figure 3.2. Wall material element of a pressurized cylindrical vessel referred to
cylindrical coordinates. Note that thickness is grossly exaggerated for visibility.

On the inner surface r = R − t there is a compressive normal stress that balances the applied
pressure but no tangential stresses. Thus

σrr = −p, τr x = τrθ = 0 at r = R − t (3.3)

Since the wall is thin, we can confidently assume that

τr x = τrθ = 0 for all r ∈ [R − t, R] (3.4)

whereas σrr varies from −p to zero. Later on we will find that σrr is much smaller than the other
two normal stresses, and in fact may be neglected (set to zero). Because τr x = τzr and τrθ = τθr

on account of shear stress reciprocity, we conclude that

τzr = τθr = 0 for all r inside wall (3.5)

The normal stresses σxx and σzz are called axial stress and circumferential or hoop stress, respec-
tively. The last wall stress component is τθx = τxθ , which is the wall shear stress. Because of
symmetry assumptions on the geometry and loading (no torque), this stress is zero. These stress
assumptions are graphically displayed, with annotations, in Figure 3.2.

Displaying the wall stress state using the stress matrix and taking the axes in order {x, θ, r} for
convenience, we have [

σxx τxθ τxr

τθx σθθ τθr

τr x τrθ σrr

]
=

[
σxx 0 0
0 σθθ 0
0 0 0

]
. (3.6)

Comparing this to the 2D stress state introduced in Lecture 1, we observe that the cylinder vessel
wall is in plane stress.
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Lecture 3: THIN WALLED PRESSURE VESSELS
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Figure 3.3. Free body diagrams (FBD) to get the averaged hoop and longitinal wall
stresses in a pressurized thin-wall cylindrical vessel

§3.4.2. Free Body Diagrams

The nonzero normal stress components σxx and σθθ in (3.6) act as sketched in Figure 3.3(a). Both
components are uniform across the wall thickness and throughout the vessel (excluding possible
end effects, which are discussed in Section 3.5). To find their value in terms of the data: p, R, and
t , we use the two FBD drawn in Figure 3.3(b,c). Details will be worked out in class. The result is

σθθ = p R

t
, σxx = p R

2t
= 1

2 σθθ . (3.7)

Neither stress depends on position. Because the hoop stress is twice the axial stress, it will be the
controlling one in a strength design. For example if R/t = 100, which is a typical vessel thickness
in aerospace applications, then σθθ = 100 p and σxx = 50 p. Since σrr is of the order of p as
previously discussed, it follows that neglecting it is justified.

We can summarize our findings by showing the stress matrix now expressed in terms of the data:[
σxx 0 0
0 σθθ 0
0 0 0

]
= pR

2t

[ 1 0 0
0 2 0
0 0 0

]
. (3.8)

§3.5. Spherical Pressure Vessel

A similar approach can be used to derived an expression for an internally pressurized thin-wall
spherical vessel. We use spherical coordinates {r, θ, φ}, as illustrated in Figure 3.4(a).

§3.5.1. Stress Assumptions

Reasoning as in the preceding case, we find that

1. All shear stresses are zero: τrφ = τφr = 0, τrθ = τθr = 0 and τθφ = τφθ = 0.

2. The normal stress σrr varies from zero on the outside free surface to the negative of the pressure
p on the inside surface. Again we will neglect this value when compared to the other normal
stresses and justify this assumption a posteriori.
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§3.6 REMARKS ON PRESSURE VESSEL DESIGN
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Figure 3.4. Stress analysis of a spherical pressure vessel in spherical coordinates. Once
again thickness is grossly exaggerated for visibility.

3. The normal stresses σθθ and σφφ are equal and constant over the entire vessel. For simplicity
we will use the abbreviation σ = σθθ = σφφ .

For convenience in writing out the stress matrix we will order the axes as {θ, φ, r}. As per the
preceding discussion, the stresses at any wall point have the configuration

[
σθθ τθφ τθr

τφθ σφφ τφr

τrθ τrφ σrr

]
=

[
σ 0 0
0 σ 0
0 0 0

]
(3.9)

This shows again that the vessel wall is in a plane stress state.

§3.5.2. Free Body Diagram

To find σ we cut the sphere into two hemispheres as shown in Figure 3.4(b). The FBD gives the
equilibrium condition σ 2π Rt = p π R2, whence

σ = p R

2t
(3.10)

Any section that passes through the center of the sphere yields the same result.

We can summarize our findings by showing the stress matrix expressed in terms of the original
data: [

σ 0 0
0 σ 0
0 0 0

]
= pR

2t

[ 1 0 0
0 1 0
0 0 0

]
(3.11)

Comparing to (3.9) shows that for the same p, R and t the spherical geometry is twice as efficient
in terms of wall stress. Why? This is explained in the next section.
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Lecture 3: THIN WALLED PRESSURE VESSELS

§3.6. Remarks on Pressure Vessel Design

For comparable radius, wall thickness and internal pressure the maximum normal stress in a spherical pres-
sure vessel is one half as large as that in a cylindrical one. The reason can be understood by comparing
Figures 3.5(a,b). In the cylindrical vessel the internal pressure is resisted by the hoop stress in “arch action”
whereas the axial stress does not contribute. In the spherical vessel the double curvature means that all stress
directions around the pressure point contribute to resisting the pressure. The cylindrical geometry, however,
can result in more efficient assignment of container space as well as stacking and better aerodynamics: a
spherical rocket does not look quite right.

One important point for designers is: what happens at the ends of a cylindrical vessel? Suppose for instance
that a cylinder is closed by hemispherical end caps, as pictured in Figure 3.6(a). If the cylinder and the end
caps were allowed to deform independently of each other under pressurization they would tend to expand as
indicated by the dashed lined in that figure. The cylinder and the ends would in general expand by different
amounts. But since physical continuity of the wall must be maintained, the necessary adjustment in the
displacement would produce local bending as well as shear stresses in the vicinity of the juncture, as pictured
in Figure 3.6(b). If thick plates are used instead of relatively flexible hemispherical ends, those juncture
stresses would increase considerably as shown in Figure Figure 3.6(b). For this reason, the ends of cylindrical
pressure vessels must be designed carefully, and flat ends are should be avoided if possible.

Most pressure vessels are fabricated from curved metal sheets that are joined by welds. Two weld types: double
dillet lap joint and double welded butt joint with V grooves are shown in Figures 3.7(a) and (b), respectively.
Of these preference should be given to the latter as it avoids across-the-weld load transmission eccentricity.

It should be emphasized that the formulas derived for TWPV in this Lecture should be used only for cases
of internal pressure. (Or, more precisely, the internal pressure exceeds the external one). If a vessel is to be
designed for external pressure, as in the case of a submarine or vacuum tank, wall buckling, whether elastic or
inelastic, may well become the critical failure mode. Should that be the case, the previous wall stress formulas
are only part of the design.

§3.7. Numerical Example

§3.7.1. CExample: Cylindrical Tank With Bolted Lids

This is Example 4.18 of Vable’s book. It is reproduced here as it combines the results of this Lecture
with the bolt-design-by-average-stress technique described in Lecture 2.

Each lid is bolted to the tank of Figure 3.8(a) along the flanges using 1-in-diameter bolts. The tank
is made from sheet metal that is 1

2 in thick and can sustain a maximum hoop stress of 24 ksi in
tension. The normal stress in the bolts is to be limited to 60 ksi in tension. A manufacturer can
make tanks of diameters varying from 2 ft through 8 ft in steps of 1 ft. Develop a table that the
manufacturer can use to advise custometrs of the size of the tank and the number of bolts per lid
needed to hold a desired gas pressure.

Solution. The area of each bolt is Abolt = 1
4π(1 in)2 = 1

4π sq in. From the hoop stress equation
σθθ = pR/t we get

σθθ = p R
1
2 in

≤ 24 ksi = 24,000 psi, whence p ≤ 12,000

R
psi (3.12)
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§3.7 NUMERICAL EXAMPLE
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Figure 3.5. Why spherical vessels are more structurally efficient.
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Figure 3.7. Welds in pressure vessels: two configurations.
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Lecture 3: THIN WALLED PRESSURE VESSELS

N      = σ     A      = π σ     /4bolt bolt bolt bolt

N   = p π Rlid
2

Figure 3.8. Cylindrical tank with bolted lids for Example 3.2.

The FBD of the lid is shown in Figure 3.8(b). Force equilibrium in the x direction gives

n Nbolt = Nlid , σbolt = 4 p R2

n
≤ 60,000. (3.13)

Substituting for p gives

4 × 12,000 R

n
≤ 60,000, or n ≥ 0.8 R. (3.14)

Rewriting these inequalities in terms of the diameter D = 2R of the tank we get

p ≤ 24,000

D
, and n ≥ 0.4D, D in inches. (3.15)

We now tabulate the maximum pressure p and the number of bolts n in terms of D as we step from
D = 2 ft = 24 in through D = 8 ft = 96 in. The values of p are rounded up to the nearest integer
multiple of 5 whereas values of n are reported by rounding up to the nearest integer.

Table 3.1. Results for Example 4.18 of Vable

Tank Diameter (ft) Max Pressure (psi) Min # of Bolts

2 1000 10
3 665 15
4 500 20
5 400 24
6 330 30
7 280 34
8 250 39
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